합병 정렬 (Merge sort)
분할정복법과 합병 정렬 (Merge sort)
합병 정렬
은 앞서 알아본 선택, 삽입, 버블 정렬과는 다르게 분할정복법
이라는 개념을 사용합니다.
**분할정복법(Divide-And-Conquer)**이라는 것은 주어진 문제를 다음과 같은 3단계의 절차를 통해 해결하는 방법입니다.
- 분할 : 해결하고자 하는 문제를 작은 크기의 동일한 문제들로 분할한다.
- 정복 : 각각의 작은 문제를 순환적으로 해결한다.
- 합병 : 작은 문제의 해를 합하여(merge) 원래 문제에 대한 해를 구한다.
그럼 이를 토대로 합병 정렬의 과정을 살펴보겠습니다.
합병 정렬은 여러 개의 데이터를 한 번에 정렬하는 것이 아닌 이를 계속해서 반으로 나눈 후 다시 합병하는 과정에서 정렬이 이루어집니다.
분할을 반복하다보면 마지막은 길이가 1인 구간으로 나뉘어집니다. 더이상 분할이 불가능할때 다시 합병하면서 정렬을 하는것입니다. 그렇기 때문에 합병 정렬에서 가장 중요한 부분은 실제 정렬을 수행하는 **합병(merge)**하는 과정입니다.
그럼 합병과정에서 정렬은 어떻게 이루어질까요? 다음 그림을 통해서 실제 정렬이 이루어지는 합병 과정을 좀 더 자세히 알아보겠습니다.
먼저 위 그림은 합병이 이루어 지기 위한 이미 정렬된 2개의 블록이 존재하는 모습입니다. 현재 두개의 블록은 이미 길이가 1인 구간으로 나눠진 배열부터 시작해 각각 합병 과정을 거쳐 정렬된 상태로 만들어진 배열입니다.
이 두개의 블록을 정렬된 상태를 유지하며 합치기 위해서는 i 인덱스에 있는 값과, j 인덱스에 있는 값을 하나씩 비교한 후 추가배열
에 저장하면 됩니다.
위 그림처럼 하나의 블록이 모두 합쳐 졌을 경우 나머지 블록은 순서대로 배열에 저장하면 됩니다.
모든 합병을 마친 후 이 추가배열의 값으로 기존 배열의 해당 구간에 복사하면 됩니다.
합병 정렬 의사 코드
의사 코드는 다음과 같습니다.
1 | mergeSort(A[],p,r){ |
합병 정렬 c++ 코드
이제 의사 코드를 바탕으로 c++ 코드를 작성하면 다음과 같습니다.
1 |
|
합병 정렬 시간 복잡도
이제 마지막으로 합병 정렬의 시간 복잡도를 알아보겠습니다. 데이터가 n개 일때 합병 정렬로 계산하는 시간을 T(n)이라고 하겠습니다.
정렬을 위해서 반으로 분할한 후 n/2개의 블럭에 재귀함수를 호출하면, 반으로 분할된 블럭 2개에 대한 정렬을 수행해야하므로 **T(n/2) + T(n/2)**의 시간이 걸립니다. 두개의 정렬된 블럭을 merge할 때 두 블럭을 한번씩 비교하므로 merge 시간은 n입니다.
따라서, merge sort의 시간 복잡도는 T(n) = T(n/2) + T(n/2) + n이 됩니다.
결국 분할을 반복하면 위와 같은 그림의 식을 도출할 수 있고, 이 식을 수학적으로 풀어보면 **O(nlogn)
**이 됩니다.
합병 정렬과 퀵 정렬 비교
아직 퀵 정렬에 대해 다루지 않았지만 합병 정렬과 퀵 정렬 모두 시간 복잡도로 **O(nlogn)
**을 갖습니다. 그러나 퀵 정렬과 합병 정렬에는 서로 다른 특징이 있습니다.
합병 정렬은 합병 과정에서 임시적인 저장공간으로 데이터를 담고 있는 배열과 같은 크기인 추가 배열을 사용하기 때문에 **추가적인 메모리가 필요
**합니다. 그러나 퀵 정렬은 추가 메모리를 사용하지 않고 내부 교환만으로 수행되는 차이가 있습니다.
또한 합병 정렬은 어떤 상황이라도 항상 **O(nlogn)**의 시간 복잡도를 갖지만 퀵 정렬의 경우 아이러니하게도 정렬하기 위해 정렬이 되어 있는 데이터를 사용할 경우 **O(n^2)**의 시간복잡도를 갖게 됩니다. (이 경우는 다음에 퀵 정렬에 대해 포스팅하며 알아보겠습니다.) 그러나 최악의 경우가 아닐 경우 일반적으로 퀵 정렬이 합병 정렬에 비해 빠른 성능을 보입니다.
합병 정렬은 퀵 정렬보다 성능이 전반적으로 떨어지고, 데이터 크기만한 메모리가 더 필요하지만 최대의 장점은 **stable sort
**라는 점입니다. 퀵 정렬의 경우 만약 배열 A[25] = 100, A[33] = 100 인 정수형 배열을 정렬한다고 할 때, 33번째에 있던 100이 25번째에 있던 100보다 앞으로 오는 경우가 생길 수 있습니다. 그에 반해서 합병 정렬은 이전의 순서를 유지하면서 정렬된 상태를 만들 수 있습니다.
출처 : 2015 봄학기 알고리즘 - 부경대 권오흠 교수님
합병 정렬 (Merge sort)
https://jongmin92.github.io/2017/11/06/Algorithm/Concept/merge-sort/